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Abstract: Soil organic carbon (SOC) is very important in the vulnerable ecological 21 

environment of the Third Pole; however, data regarding the spatial distribution of SOC 22 

are still scarce and uncertain. Based on multiple environmental variables and soil profile 23 

data from 458 pits (depth of 0–1 m) and 114 cores (depth of 0–3 m), this study uses a 24 

machine-learning approach to evaluate the SOC storage and spatial distribution at a 25 

depth interval of 0–3 m in the frozen ground area of the Third Pole region. Our results 26 

showed that SOC stocks (SOCS) exhibited a decreasing spatial pattern from the 27 

southeast towards the northwest. The estimated SOC storage in the upper 3 m of the 28 

soil profile was 46.18 Pg for an area of 3.27 × 106 km2, which included 21.69 Pg and 29 

24.49 Pg for areas of permafrost and seasonally frozen ground, respectively. The mean 30 

SOCS under different vegetation types showed a decreasing pattern as follows: forest > 31 

shrub > cropland > grassland > desert. Among all soil orders, histosols and gleisoil had 32 

the largest SOCSs, while gypsisols and salt flats had the smallest SOCS. Our results 33 

provide information on the storage and patterns of SOCS at a 1 km2 scale for areas of 34 

frozen ground in the Third Pole region, thus providing a scientific basis for future 35 

studies pertaining to Earth system models. The dataset is open-access and available at 36 

https://doi.org/10.5281/zenodo.4293454 (Wang et al., 2020). 37 

1 Introduction 38 

Soil is an important part of the global terrestrial ecosystem and represents the 39 

largest terrestrial organic carbon pool with the longest turnover time (Amundson, 2001). 40 

This is especially true in areas of frozen ground, including permafrost and seasonally 41 

frozen ground. In cold environments, soil accumulates substantial organic carbon due 42 

to slow decomposition rates and repeated freeze–thaw cycles (Fan et al., 2012; Li et al., 43 

2020). It has been reported that more than half of the world’s soil organic carbon (SOC) 44 

is stored in permafrost regions (Hugelius et al., 2014; Ping et al., 2015). Even slight 45 

changes in the decomposition of the SOC pool in permafrost regions might lead to 46 

significant changes in the atmospheric CO2 concentration, which plays an important 47 

role in regulating and stabilizing the carbon balance of global ecosystems (Schuur et 48 

al., 2015). Therefore, it is of great significance to accurately estimate the storage and 49 

https://doi.org/10.5194/essd-2020-368

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 25 February 2021
c© Author(s) 2021. CC BY 4.0 License.



 

3 

 

spatial distribution of SOC in regions of frozen ground in order to study the carbon 50 

cycle of this ecosystem as well as global change. 51 

As the “roof of the world”, the Third Pole is the area of frozen ground at the highest 52 

average altitude in the middle and low latitudes of the Northern Hemisphere, where 53 

permafrost and seasonally frozen ground cover areas of ~1.72 × 106 km2 and ~1.55 × 54 

106 km2, respectively (Obu et al., 2019). The Third Pole is also one of the most sensitive 55 

areas with respect to global climate change, and has a warming rate that is 56 

approximately twice the global average (Stocker et al., 2013). In the past few decades, 57 

permafrost in the Third Pole region has experienced obvious degradation, which is 58 

characterized by an increasing ground temperature, a deepening of the active layer, a 59 

shrinking permafrost area, an expanding area of seasonally frozen ground, and the 60 

development of thermokarst (Mu et al., 2020; Ran et al., 2017; Turetsky et al., 2019; 61 

Wu et al., 2012). Permafrost degradation will not only cause serious geological disasters 62 

and affect engineering construction in cold areas, but will also accelerate the 63 

decomposition of the huge SOC pool stored in permafrost. Moreover, it will emit a large 64 

amount of greenhouse gases into the atmosphere, thus increasing the rate of climate 65 

change in the future (Schuur et al., 2015). Therefore, accurate estimates of the SOC 66 

storage and spatial distribution in the area of frozen ground in the Third Pole region 67 

have become important for Earth system modeling. Such estimates are widely used to 68 

study the carbon cycle of this ecosystem and global change (Koven et al., 2011; 69 

Lombardozzi et al., 2016; McGuire et al., 2018). 70 

Early studies were mostly based on data from China’s national soil survey, and 71 

were combined with regional vegetation/soil maps to estimate the SOC pool for a 72 

certain vegetation type or relatively small area (Wang et al., 2002; Zeng et al., 2004). 73 

Up until 2008, the Chinese part of the Qinghai-Tibet Plateau (QTP) was taken as an 74 

independent geographical unit to estimate the SOC pool in the upper 100 cm of the soil 75 

profile (Tian et al., 2008; Wu et al., 2008). However, these studies did not distinguish 76 

between regions of permafrost and seasonally frozen ground. Mu et al. (2015) used data 77 

from 11 deep sediment cores and previously published data to estimate the SOC storage 78 

of permafrost regions on the QTP, and found this to be 27.9 Pg in the upper 2 m of the 79 
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soil profile and 132.3 Pg below a depth of 2 m. Zhao et al. (2018) used the data of 200 80 

soil profile measurements from permafrost zones on the QTP, and reported a SOC 81 

storage of 17.07 Pg for the upper 2 m of the soil profile. Subsequently, Jiang et al. (2019) 82 

used the second Chinese soil census data and estimated that the total SOC pool for a 83 

depth interval of 0–3 m on the QTP was approximately 73.61 Pg. Although the 84 

aforementioned studies improved our understanding of SOC storage in the Third Pole 85 

region, their results were quite different due to differences in the SOC data sources, 86 

number of sampling sites, and research aims. Furthermore, the large-scale maps of 87 

vegetation and soil types used in these studies were associated with large uncertainties 88 

because they were created years ago and have a low spatial resolution, thus leading to 89 

potentially large errors in the estimated total SOC pools. 90 

Recently, considerable progress has been made in digital soil mapping methods. 91 

Spatial interpolation, linear regression, and machine learning have been widely used to 92 

simulate the spatial distribution of SOC in the permafrost region of the QTP (Ding et 93 

al., 2016; Ding et al., 2019; Wang et al., 2020; Yang et al., 2008). These studies have 94 

provided new spatial data and improved the prediction accuracy of SOC compared with 95 

earlier studies. However, few studies to date have systematically assessed SOC pools 96 

across areas of seasonally frozen ground in the Third Pole region, which limits many 97 

investigations requiring SOC data for these areas. The average elevation of the 98 

seasonally frozen ground in the Third Pole region exceeds 3800 m, and there is a colder 99 

environment, longer freezing time, and slower decomposition rate of organic matter in 100 

comparison to other regions at the same latitude (Chen and Li, 2008). In addition, the 101 

total SOC storage cannot be neglected and requires further study. 102 

To evaluate the size and high-resolution spatial patterns of SOC stocks in the Third 103 

Pole region, we carried out a large-scale field-sampling plan that covered representative 104 

permafrost zones over the region’s bioclimatic gradient, including a large unpopulated 105 

area with harsh natural conditions. A total of 200 soil pits were excavated, most of 106 

which were deeper than 2 m (Zhao et al., 2018). In addition, we collected field-107 

measured SOCS data for the Third Pole region from relevant literature published 108 

between 2000 and 2016 (Ding et al., 2016; Song et al., 2016; Xu et al., 2019; Yang et 109 
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al., 2008). By combining high-resolution remotely sensed data and interpolated 110 

meteorological datasets, we simulated the spatial distribution of SOCS in the Third Pole 111 

region by three machine learning methods and calculated the SOC storage of specific 112 

soil intervals (0–30 cm, 0–50 cm, 0–100 cm, 0–200 cm, and 0–300 cm). The results 113 

provide basic data for Earth system modeling, and reference methods for studying the 114 

spatial distribution of soil elements under complex terrain. 115 

2 Materials and Methods 116 

2.1 Study area 117 

The Third Pole is the highest plateau in the world, and is located on the QTP and 118 

its surrounding mountains, which include Pamir and Hindu Kush mountain ranges in 119 

the west, the Hengduan Mountains in the east, the Kunlun and Qilian mountains in the 120 

north, and the Himalayas in the south (Yao et al., 2012). In addition, the Third Pole is 121 

the largest high-altitude permafrost zone in the Northern Hemisphere, with a total 122 

permafrost area of approximately 1.72 × 106 km2, thus representing ~8% of permafrost 123 

regions in the Northern Hemisphere (Obu et al., 2019). The average active layer 124 

thickness is 2.3 m (Qin et al., 2017). The area of seasonally frozen ground covers an 125 

area of approximately 1.55 × 106 km2, which is mainly located in the eastern and 126 

southern parts of the Third Pole as well as at lower elevations of basins. 127 

Affected by high altitude, most areas of the Third Pole are dominated by a 128 

mountain plateau climate with strong solar radiation. The mean annual precipitation 129 

(MAP) ranges from 50 mm to 2000 mm and falls mainly during the growing season 130 

from May to September (Ji et al., 2018). The mean annual temperature (MAT) is < 5 °C, 131 

which gradually decreases with elevation, and has an obvious vertical climate zone (Qin 132 

et al., 2005). The Third Pole is mainly covered by five types of vegetation: forests, 133 

shrubs, grasslands, croplands, and deserts (Hao et al., 2017). 134 

2.2 Data Processing 135 

2.2.1 Soil organic carbon data 136 

The SOC data used in this study included document data and field-measured data 137 

(Table 1). 1) Document data: data pertaining to a soil depth interval of 0–30 cm (n = 138 

135) was retrieved from Yang et al. (2010) for the SOC database. Data pertaining to a 139 
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depth interval of 0–100 cm (n = 93) was obtained from Xu et al. (2019). Data pertaining 140 

to a depth interval of 0–100 cm (n = 30) retrieved from Song et al. (2016). Moreover, 141 

additional data for 0–3 m and 0–2 m depth intervals (n = 113) were retrieved from Ding 142 

et al. (2016). 143 

2) Field measured data: a total of 200 soil pits were excavated between 2009 and 144 

2013; 72 soil pits were excavated manually in 2009, and 128 soil pits were excavated 145 

with hydraulic excavators in 2010 and 2011 (Zhao et al., 2018). For each soil profile, 146 

we collected soil samples at depth intervals of 0–10 cm, 10–20 cm, 20–30 cm, 30–50 147 

cm, 50–100, and 100–200 cm. The bulk density was measured using a bulk soil sampler 148 

(5 cm diameter and 5-cm-high stainless-steel cutting ring). The SOC content was 149 

determined using the Walkley-black method after soil samples were pretreated by air 150 

drying, grinding, and screening. The analyses were carried out in triplicate using 151 

subsamples, and the mean of three values was used as the SOC content. The SOCS was 152 

calculated using Eq. (1): 153 

1

(1 )

10

n
i

i i i

i

C
SOCS T BD SOC

=

−
=                (1) 154 

where Ti, BDi, SOCi, and Ci are soil thickness (cm), dried bulk density (g·cm-3), SOC 155 

content (%) and > 2mm rock fragment content (%) at layer i. 156 

2.2.2 Environmental data 157 

The environmental covariates used in this study included a digital elevation model 158 

(DEM), remotely sensed data, and spatial interpolation data (Table S1). 159 

A DEM at a spatial resolution of 1 km × 1 km was downloaded from the 160 

International Scientific Data Service Platform (http://datamirror.csdb.cn). Using the 161 

DEM data and SAGA GIS software, we calculated 14 terrain attributes: elevation (H), 162 

slope (S), aspect (A), plan curvature (PlanC), profile curvature (ProC), topographic 163 

wetness index (TWI), total catchment area (TCA), relative slope position (RSP), slope 164 

length and steepness factor (LS), convergence index (CI), channel network base level 165 

(CNB), channel network distance (CND), valley depth (VD), and closed depressions 166 

(CD).  167 

Mean annual air temperature (MAT) and mean annual precipitation (MAP) data 168 
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were downloaded from WorldClim version 2.1 (https://www.worldclim.org). These 169 

datasets were generated by organizing, calculating, and spatially interpolating observed 170 

data from global meteorological stations for the period 1970–2000. 171 

Normalized difference vegetation index (NDVI) data were obtained from the 172 

United States Geological Survey (USGS) (http://modis.gsfc.nasa.gov/). The datasets 173 

underwent atmospheric, radiometric, and geometric correction, with a spatial resolution 174 

of 1 km × 1 km for every 1-month interval over the period 2000–2015. The NDVI 175 

product was calculated using the maximum value composite (MVC) method, which can 176 

minimize the effects of aerosols and clouds (Stow et al., 2004). 177 

The net primary productivity (NPP) and leaf area index (LAI) data were obtained 178 

from the Global Land Surface Satellite (GLASS, V3.1), which is estimated from the 179 

MODIS reflectance data using the general regression neural network (GRNN) method 180 

(Liang et al., 2013). Data were at a 1 km resolution for 8 day periods between 2000 and 181 

2015, and were downloaded from the National Earth System Science Data Center of 182 

the National Science & Technology Infrastructure of China (http://www.geodata.cn).  183 

The soil texture data, including sand, silt, and clay contents, were obtained from 184 

the “SoilGrids250m database” (http://www.isric.org). The original 250 m spatial 185 

resolution data were resampled to a 1 km resolution based on nearest neighbor 186 

interpolation using ArcGIS 10.2 software (ESRI, Redlands, CA, USA). A digitized soil 187 

taxonomy map was provided by the Harmonized World Soil Database version 1.2 188 

(http://www.fao.org/), which combines existing national soil information worldwide (1 189 

km resolution). 190 

The land cover data used in this study were collected from the Land Cover Type 191 

Climate Modeling Grid (CMG) product (MCD12C1) from 2010 192 

(https://lpdaac.usgs.gov). The classification schemes in this study were based on the 193 

global vegetation classification scheme of the International Geosphere Biosphere 194 

Programme (IGBP). We reclassified the land cover types into five major categories: 195 

forest, shrub, grassland, cropland, and desert. 196 

2.3 Model predictions 197 

In this study, three machine learning methods (random forest (RF), gradient 198 
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boosted regression tree (GBRT), and support vector machine (SVM)) were constructed 199 

and validated using the SOCS in the upper 30 cm of soil profiles along with associated 200 

variables. 201 

With respect to the machine learning methods used, RF is used for classification, 202 

regression, and other tasks. It is operated by constructing a large number of decision 203 

trees during training, and outputs the class as the classification or regression patterns of 204 

single trees (Tin Kam, 1998). The GBRT method is an iterative fitting algorithm 205 

composed of multiple regression trees, and combines regression trees with a boosting 206 

technique to improve predictive accuracy (Elith et al., 2008). The SVM regression 207 

method uses kernel functions to construct an optimal hyperplane, which has a minimal 208 

total deviation (Drake and Guisan, 2006). Combined with the remotely sensed data and 209 

spatial interpolation data, RF, GBRT, and SVM regression were conducted to predict 210 

the SOCS in the Third Pole region. The ‘randomForest’, ‘gbm’, and ‘e1071’ packages 211 

in R were used to perform RF, GBRT, and SVM analyses. 212 

The 15 input variables (H, S, TWI, TCA, RSP, CNB, CND, VD, NDVI, NPP, LAI, 213 

MAP, MAT, sand, and silt) for the three regression models were selected because they 214 

can reflect the effects of topography, climate, vegetation, and soil properties on regional 215 

SOCSs. Moreover, these variables were significantly associated with the SOCS at a 216 

depth interval of 0–30 cm (P < 0.01, Table S2), whereas other environmental factors 217 

were eliminated due to their low correlation coefficients. 218 

To generate the spatial distributions of SOCS in deep layers (below a depth of 100 219 

cm), we established nonlinear extrapolation models (Fig. 3.a–b; Eqs. (2)–(4)) between 220 

the SOCS in the upper 100 cm interval and the SOCS in the upper 200 cm interval using 221 

the data from the 200 soil pits in grassland (n = 151) and desert ecosystems (n = 49, 222 

Fig. A1). A third extrapolation model between the SOCS in the upper 200 cm interval 223 

and the SOCS in the upper 300 cm interval in grassland ecosystems was established 224 

using the data from 114 sites reported by Ding et al. (2016) (Fig 3.c; Eq. (4)). 225 

0 200cm 0 100cmln 0.9708 ln 0.3128SOCS SOCS− −=  +      (2) 226 

0 200cm 0 100cmln 0.8690 ln 0.7649SOCS SOCS− −=  +      (3) 227 
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0 300cm 0 200cmln 0.9521 ln 0.3296SOCS SOCS− −=  +      (4) 228 

where lnSOCS0–100cm, lnSOCS0–200cm and lnSOCS0–300cm are the natural logarithms of the 229 

soil organic carbon stocks (kg·m-2) at the depth intervals of 0–100 cm, 0–200 cm, and 230 

0–300 cm, respectively. 231 

It is impossible to build extrapolation models directly to estimate deep SOC storage 232 

in forest, shrub, and cropland ecosystems, which lack deep soil pits below 100 cm. 233 

Therefore, according to the vertical distribution of the SOCS associated with different 234 

land cover types worldwide from Jobbagy and Jackson (2000), the extrapolation models 235 

shown in Eqs. (5)–(6) were established indirectly to estimate deep SOC storage (below 236 

a depth of 100 cm) in areas of these land cover types (Fig. S1). Correspondingly, Eq. 237 

(7) was established to estimate the deep SOC storage (below a depth of 200 cm) in 238 

desert ecosystems due to a lack of deep soil pits below 200 cm. 239 

( )0 200 100 200 0 1001cm cm cmSOCS SOCS− − −= +       (5) 240 

( )0 300 100 200 200 300 0 1001cm cm cm cmSOCS SOCS − − − −= + + 
    (6) 241 

0 300 0 200 200 300 0 100cm cm cm cmSOCS SOCS SOCS− − − −= +       (7) 242 

where 100–200cm and 200–300cm are proportion of SOCS100–200cm and SOCS200–300cm in 243 

SOCS0–100cm, respectively. 244 

The calculation of the SOC storage (Pg) for a region generally uses Eq. (8): 245 

12

1

10
n

storage i

i

SOC SOCS A −

=

=                (8) 246 

where SOCSi is the SOCS (kg·m-2) at site i and A is the area (m2) of each grid unit. 247 

To test the predictive effects of the two machine learning methods, “leave-one-out” 248 

cross-validation was conducted. We used the R2 value, the mean error (ME, Eq. (9)), 249 

and the root mean square error (RMSE, Eq. (10)) to evaluate the performance of the 250 

prediction models. 251 

*

1

1
[ ( ) ( )]

n

i i

i

ME D x D x
n =

= −         (9) 252 

* 2

1

1
[ ( ) ( )]

n

i i

i

RMSE D x D x
n =

= −         (10) 253 

where D(xi) is the measured SOCS, D*(xi) is the predicted SOCS, and n is the number 254 
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of validation sites. 255 

3 Results 256 

3.1 Performance of machine learning methods 257 

The results of the “leave-one-out” cross-validation showed that the RF model 258 

exhibited a Pearson’s correlation coefficient of 0.81, which was higher than that of the 259 

GBRT model (0.79) and SVM model (0.77). In addition, the RMSE of the RF model 260 

(3.01 kg·m-2) was lower than that of the GBRT model (3.11 kg·m-2) and SVM model 261 

(3.21 kg·m-2) for the upper 30 cm of the soil profile. These results suggest that the RF 262 

model provides a better tool for predicting the spatial distribution of SOCS in the Third 263 

Pole region. Moreover, in order to further discuss the simulation accuracy of the RF 264 

model in this study, “leave-one-out” cross-validations were conducted for depth 265 

intervals of 0–50 cm and 0–100 cm. The results revealed high R2 as well as low RMSE 266 

and ME values (Fig. 6). 267 

3.2 Storage and spatial distribution of soil organic carbon 268 

Figure 7 shows a large spatial variability of the SOCS across the Third Pole region, 269 

whereby an overall decreasing trend can be observed from the southeast towards the 270 

northwest. The wetland area in the eastern region of the Third Pole (Ruoergai) had the 271 

highest predicted SOCS for a depth interval of 0–300 cm (> 32 kg·m-2), whereas the 272 

northern region (Qiangtang Plateau and Qaidam Basin) had the lowest SOCS (< 8 kg·m-273 

2). The estimated mean SOCS for the entire Third Pole region at depth intervals of 0–274 

30 cm, 0–50 cm, 1–100 cm, 0–200 cm, and 0–300 cm was 4.84 kg·m-2, 6.45 kg·m-2, 275 

8.51 kg·m-2, 11.57 kg·m-2, and 14.17 kg·m-2, respectively. Correspondingly, the total 276 

estimated SOC storage was 15.79 Pg, 21.04 Pg, 27.75 Pg, 37.71 Pg, and 46.18 Pg at 0–277 

30 cm, 0–50 cm, 0–100 cm, 0–200 cm, and 0–300 cm, respectively (Table 2). In 278 

addition, the SOCS decreased with increasing soil depth across the Third Pole region, 279 

with 34.26% of the total SOC storage for a depth interval of 0–300 cm being contained 280 

in the uppermost 30 cm, and only 17.89% in the 200–300 cm depth interval. 281 

Compared with the area of seasonally frozen ground, the mean SOCS and total SOC 282 

storage in the permafrost region were lower in each soil layer. The estimated amount of 283 

SOC stored at a depth interval of 0–300 cm in the permafrost and seasonal frozen 284 
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ground zone were 21.69 Pg and 24.49 Pg, respectively, which accounted for 46.97% 285 

and 53.03% of the total SOC pools, respectively. 286 

The mean SOCS differed significantly among the various vegetation types (P < 0.05), 287 

and were ranked as: forest > shrub > cropland > grassland > desert (Fig. 8). The 288 

estimated SOC storage at a depth interval of 0–300 cm in forest, shrub, cropland, 289 

grassland, and desert areas was 3.30 Pg, 0.85 Pg, 31.67 Pg, 9.77 Pg, and 0.59 Pg, thus 290 

accounting for 7.15%, 1.84%, 68.58%, 21.57%, and 1.28% of the total, respectively. 291 

According to the Harmonized World Soil Database, soils in the Third Pole region can 292 

be divided into 21 main orders. Table 3 shows that the mean SOCS differed significantly 293 

among various soil orders. The highest mean SOCS was for histosols (39.45 kg·m-2), 294 

which was ~3 times higher than that for leptosols (14.17 kg·m-2), calcisols (11.50 kg·m-295 

2), cambisols (11.36 kg·m-2), lithosols (12.91 kg·m-2), and regosols (11.32 kg·m-2). The 296 

mean SOCS values of chernozems, greyzems, gleysols, podzoluvisols, and luvisols 297 

were all > 20 kg·m-2, whereas those of arenosols, salt flats, and solonchaks were all < 298 

8 kg·m-2. Due to the differences in the mean SOCS values and distribution area, the 299 

total SOC storage of each soil order also differed significantly. The total SOC storage 300 

of leptosols was ~25.41 Pg for a depth interval of 0–300 cm, thus accounting for 55.02% 301 

of the total SOC pool in the area of frozen ground on the QTP, while other soil orders 302 

were < 5 Pg. 303 

4 Discussion 304 

Due to the lack of systematic field observations, soil is still the part of the terrestrial 305 

carbon cycle with the least amount of data, and the estimation of regional SOC pools 306 

remains uncertain. Relatively few studies have estimated the SOC pool of the Third 307 

Pole region. Most studies related to the Chinese part of the QTP (Tian et al., 2008; Wu 308 

et al., 2008), or focused on the SOC storage of a certain vegetation type or certain area 309 

(Wang et al., 2002). In addition, it is difficult to obtain data for deep soil horizons in the 310 

Third Pole region due to complex terrain and harsh environment. Hence, most terrestrial 311 

SOCS studies have focused on the shallow soil layer within 100 cm (Bai et al., 2010; 312 

Fang et al., 1996; Yang et al., 2008), especially that of permafrost zones (Ding et al., 313 

2016; Mu et al., 2015; Wang et al., 2020; Zhao et al., 2018). 314 
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To date, few studies have, therefore, investigated the SOC storage and spatial patterns 315 

in areas of seasonally frozen ground in the Third Pole region. Our study provides new 316 

and more accurate data on SOC storage and spatial patterns for a depth interval of 0–3 317 

m at a 1 km2 scale over the Third Pole region, thus providing basic data for future 318 

studies pertaining to Earth system modeling. We note that a lack of deep soil pits in 319 

forest, shrub, and cropland ecosystems (Fig. S2) means some uncertainties in the 320 

estimation of deep SOC pools remain; however, the collective area of these ecosystems 321 

accounts for < 6% of the total area of the Third Pole region and may have a relatively 322 

small influence on total SOC pools (Fig. A1). Regardless, there is a need for large-scale 323 

soil surveys that include these areas in order to obtain more accurate information on the 324 

SOC storage and distribution in the Third Pole region. Furthermore, regional SOC pools 325 

are affected by many other factors, such as soil moisture (Wu et al., 2016) and grazing 326 

activities (Zhou et al., 2017), which were not considered in our study due to lack of 327 

high-resolution data with a high accuracy. Future work should consider the influence 328 

of these factors on SOC at a regional scale to obtain more accurate datasets. 329 

5. Data availability 330 

The dataset of SOCS in the Third Pole region is available at the 331 

https://doi.org/10.5281/zenodo.4293454 (Wang et al., 2020). 332 

6. Conclusions 333 

This study simulated the spatial pattern of the SOCS over the Third Pole region, and 334 

systematically estimated the SOC storage (46.18 Pg) at a depth interval of 0–3 m for 335 

the first time. Our results demonstrated that combining multi-environmental factors 336 

with machine learning techniques (RF, SVM, and GBRT) can offer an effective and 337 

powerful modeling approach for mapping the spatial patterns of SOC. Furthermore, this 338 

study provided datasets of SOCS and SOC storage for permafrost and seasonally frozen 339 

ground, as well as for various vegetation/soil types at different soil depths (0–30 cm, 340 

0–50 cm, 0–100 cm, 0–200 cm, and 0–300 cm) across the Third Pole region. These 341 

datasets can be used to modify existing Earth system models and improve prediction 342 

accuracy, and also serve as a reference for policymakers to formulate more effective 343 

carbon budget management strategies. 344 
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 357 

Figure 1. Distribution of soil pits in the Third Pole region (the frozen ground map is derived from 358 

Obu et al., 2019). 359 
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 360 

Figure 2. Field work photographs showing (a) soil sample collection, and (b) a soil profile. 361 
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 362 

Figure 3. Extrapolation function of the SOCS between soil depth intervals of (a) 0–100 cm and 0–363 

200 cm in grassland ecosystems, (b) 0–100 cm and 0–200 cm in desert ecosystems, and (c) 0–200 364 

cm and 0–300 cm in grassland ecosystems. 365 
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 366 

Figure 4. Workflow diagram for predicting SOCSs in this study. RF: random forest; SVM: 367 

support vector machine; GBRT: gradient boosted regression tree.  368 
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 369 

Figure 5. A Taylor diagram used to evaluate the model performance of random forest (RF), 370 

support vector machine (SVM), and gradient boosting regression tree (GBRT) models, which 371 

were used to predict the SOCS in the upper 30 cm of soil profiles across the Third Pole. The 372 

contour centered on the observed indicates the root-mean-square error (RMSE, kg·m-2) between 373 

the predicted value and observed value. 374 
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 375 

Figure 6. “Leave-one-out” cross-validation for the RF model used to predict the SOCS at (a) 0–30 376 

cm, (b) 0–50 cm, and (c) 0–100 cm depth intervals. 377 
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 378 

Figure 7. Spatial distribution of SOCS at different depth intervals over the Third Pole region. 379 
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 380 

Figure 8. Summary of the estimated SOC stocks of different vegetation types in the Third Pole. 381 
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Table 1 Summary of soil organic carbon datasets used in this study 382 

Number of 

samples 

Depth interval Period Method Source 

135 0–30 cm, 0–50, and 0–100 cm 2001–2005 Walkley-black method  Yang et al., 2010 

30 Genetic horizon 2012–2013 Walkley-black method  Song et al., 2016 

93 0–100 cm 2004–2014 Walkley-black method  Xu et al., 2019 

113 0–200 cm and 0–300 cm 2013–2014 Walkley-black method  Ding et al., 2016 

200 0–200 cm 2009–2013 Walkley-black method Field-measured  

383 
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Table 2 Summary of the estimated mean SOC stocks and storages in permafrost and seasonally 384 

frozen ground of the Third Pole 385 

Depth 

(cm) 

SOC stock (kg·m-2) SOC storage (Pg) 

Permafrost 
Seasonally 

frozen ground 

Third 

Pole 
Permafrost 

Seasonally 

frozen ground 

Third 

Pole 

0–30 4.13 5.56 4.84 7.61 8.63 15.79 

0–50 5.72 7.16 6.45 10.53 11.12 21.04 

0–100 7.28 9.70 8.51 13.41 15.06 27.75 

0–200 10.25 12.88 11.57 18.88 19.99 37.71 

0–300 12.52 15.40 14.17 21.69 24.49 46.18 

386 
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Table 3 Summary of the estimated mean SOC stock and storage of different soil orders in the 387 

Third Pole 388 

Soil order 
Area (103 

km2) 

SOC stock (kg·m-2) SOC storage (Pg) 

0–30 

cm 

0–100 

cm 

0–300 

cm 

0–30 

cm 

0–100 

cm 

0–300 

cm 

Leptosols 1793.53 4.84 8.51 14.17 8.68 15.26 25.41 

Arenosols 60.59 1.78 3.88 7.87 0.11 0.24 0.48 

Calcisols 89.44 3.59 6.64 11.50 0.32 0.59 1.03 

Cambisols 313.14 3.62 6.58 11.36 1.13 2.06 3.56 

Chernozems 78.31 8.47 14.45 22.47 0.66 1.13 1.76 

Gypsisols 61.64 1.36 3.36 7.40 0.08 0.21 0.46 

Greyzems 16.26 9.61 15.44 23.82 0.16 0.25 0.39 

Gleysols 71.98 11.71 18.73 29.04 0.84 1.35 2.09 

Kastanozems 34.59 6.07 10.39 16.47 0.21 0.36 0.57 

Lithosols 367.94 4.34 7.57 12.91 1.60 2.79 4.75 

Phaeozems 44.01 4.77 8.45 13.68 0.21 0.37 0.60 

Luvisols 156.35 9.37 15.71 25.04 1.46 2.46 3.92 

Solonchaks 38.32 1.80 3.96 7.97 0.07 0.15 0.31 

Salt flats 20.7 1.21 3.28 7.30 0.03 0.07 0.15 

Histosols 3.62 13.33 27.36 39.45 0.05 0.10 0.14 

Anthrosols 9.54 5.01 9.41 15.13 0.05 0.09 0.14 

Fluvisols 8.97 3.06 5.78 10.19 0.03 0.05 0.09 

Regosols 7.9 3.78 6.55 11.32 0.03 0.05 0.09 

Podzlos 7.28 1.92 3.76 8.01 0.01 0.03 0.06 

Podzoluvisols 2.96 8.90 13.57 21.60 0.03 0.04 0.06 

Rendzina 1.94 5.26 9.48 16.14 0.01 0.02 0.03 

*Soil orders with an area of < 1 km2 were not included. 389 
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